The realization space is [1 x1^2 - 2*x1 + 1 1 0 x1 x1^2 - 2*x1 + 1 1 0 0 x1 - 1 x1] [1 x1^2 0 1 2*x1 - 1 2*x1^2 - x1 1 0 2*x1 - 1 0 2*x1 - 1] [1 x1^2 0 0 x1 x1^2 0 1 x1^2 -x1^2 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-2*x1^16 + 15*x1^15 - 37*x1^14 + 35*x1^13 + 2*x1^12 - 30*x1^11 + 24*x1^10 - 8*x1^9 + x1^8) avoiding the zero loci of the polynomials RingElem[x1 - 1, 2*x1 - 1, x1, x1^3 - 5*x1^2 + 4*x1 - 1, x1^2 + 2*x1 - 1, x1^2 - 3*x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 1, x1^2 + x1 - 1, x1^2 - 4*x1 + 2]